

Benchtop NMR: What can it do for you ?

Sanel Suljić sanel@magritek.com

The history of Magritek

Magritek was founded in 2004 to develop mobile and benchtop NMR and MRI instruments to enable new applications in Industry, Research and Education.

The original IP was developed during two decades of research by teams at RWTH Aachen in Germany and Massey and Victoria Universities in New Zealand

Prof Bernhard Blümich, Ampere Prize Mobile NMR, Germany

Prof Paul Callaghan, Günther Laukien Prize, NMR in Antarctica, New Zealand

The history of Magritek

Spinsolve family

Magritek today

Magritek today has manufacturing and research facilities in Germany and New Zealand, sales and support offices in the USA and UK, and a network of distributors and agents around the world

NMR Spectroscopy

MRI

TD-NMR T1, T2, Diffusion

Magritek's facility in Aachen

In the Aachen facility

- Production
- R&D
- Application / Application Lab
- Sample Analysis
- Customer Demonstrations
- Marketing
- Administration and Controlling

1D ¹H NMR spectrum of ethanol

This ethanol sample has very little water in it, which means the hydroxyl proton couples to the CH₂. This results in the OH appearing as a triplet and the CH₂ appears as a doublet of quartets.

© Magritek 2018

6

Benefits of NMR

- NMR is a powerful, information rich analytical technique, that can elucidate molecular structures
- Essential for organic or synthetic chemists "Have I made what I thought I made?"
- Quantifiable

"How much or how pure is my product?"

Non-destructive

© Magritek 2018

Why Benchtop NMR Spectroscopy ?

High-field NMR systems

- **Expensive** (capital, cryogen fills, operation, requires special facilities)
- **Complicated** (limited to experts)
- Fragile (environment)

Take the sample to the spectrometer

Benchtop NMR Spectroscopy technology

- Affordable (cryogen-free, no special requirements, minimum running costs)
- **Easy to use** (more people can access the technology)
- Robust (operates in wide range of environments)

Take the spectrometer to the sample

Spinsolve Benchtop NMR

Spinsolve[®]80

En

Spinsolve 43 Spinsolve 60

43, 60 and 80 MHz Permanent Magnets with ¹H, ¹⁹F

¹³C, ³¹P, ¹⁵N, ²⁹Si, ¹¹B, ²H Capabilities (one of those / X nuclei)

¹ Each Spinsolve System features patented magnet technology.

The following patents apply: US20100013473A1, US8148988, EP2144076A1, EP2144076B1

Spinsolve 80 Carbon

Spinsolve 80

80 MHz permanent magnet
No cryogens
¹H, ¹⁹F and ¹³C
Built in External Lock
No spinning, no air required
Benchtop size and weight
5mm NMR tubes
Easy to use software
Robust and Low Maintenance

Benefit of higher frequency – 1D ¹**H**

Spinsolve ULTRA (43 / 60 MHz)

Ultra-high field homogeneity combined with solvent suppression allows you to resolve compounds dissolved at sub-millimolar concentrations in protonated solvents, such as water.

Resolving metabolites in urine at milli-molar concentrations

ULTRA Applications

Ethanol

0.16

0.03

0.02

0

0

0

Total

(NMR)

16.2

9.8

9.5

10.7

11.2

0

Total

(Label)

16.0

9.8

9.0

10.7

10.7

0

*All units g/100ml. Ethanol is % vol.

Measuring sugar content in soft drinks

Linewidth measured in a chloroform spectrum

- No sample spinning, no spinning side bands, no requirement for compressed air
- No reference deconvolution, only standard NMR data processing is used

Benefits of the Spinsovle

- Compact, fits on normal lab bench
- No cryogens needed
- Robust and easy to use software
- Fast results
- Standard size economy style 5 mm NMR tubes can be used
- Alternative: Reaction Monitoring Setup
- No sample spinning/compressed gas
- Deuterated solvents are not necessary
- Superior sensitivity, resolution, and stability compared to other benchtop NMR

$$B_0(\vec{r}) = K \ln(r_{out} / r_{in})$$

K. Halbach, Nucl. Instr. Meth. 169 (1980)

¹ Each Spinsolve System features patented magnet technology.

The following patents apply: US20100013473A1, US8148988, EP2144076A1, EP2144076B1

Spinsolve 80 Carbon Hardware (73 kg)

Very similar situation for the 43/60 MHz Spinsolve Systems (55/60 kg)

Spinsolve Stability

5 days of scans superimposed

Modern NMR Pulse Sequences

2D HETCOR 2D HMBC 2D HMQC 2D HSQC 2D HSQC-ME ...

Modern NMR Pulse sequences

- Multipulse electronics capability
- 2D NMR sequences
- Inverse detection
- Coherence selection
- Decoupling
- Artifacts : T₁ noise, phase, ...

Stability

Easy to Use Standard Software

Advanced Expert Software

lst = endpp(mode) # Return parameter list

Phase cycle list
 phaseList = [1,3,3,1; # +y,-y,-y,+y : 90 phase

0,0,1,1; # +x,+x,+y,+y : 180 phase 2,0,2,0] # -x,+x,-x,+x : Acquire phase

endproc(lst,tabs,interface,relationships,variables,dim,phaseList)

Proton Sensitivity

1D ¹H Ethyl crotonate

© Magritek 2018

23

2D Homonuclear COSY

1D ¹³Carbon DEPT Cycle

Structure elucidation – ¹³C Spectra are similar

2D HSQC – Multiplicity Edited (ME)

2D HMBC Ethyl crotonate

Spinsolve Pulse Sequences

1H Proton	19F Fluorine	¹³ C Carbon (³¹ P, X)	Expert
 1D PROTON Paramagnetic Wideband 13C-decoupled 1D Proton 19F-decoupled 1D proton 2D COSY 2D TOCSY 2D TOCSY 2D JRES T1, T2 Reaction Monitoring 	 1D Fluorine Paramagnetic Wideband 1H-decoupled 1D Fluorine 2D F COSY 2D F JRES 2D FH COSY Reaction Monitoring 	 1D spectra DEPT 2D HETCOR 2D HMBC 2D HMQC 2D HSQC 2D HSQC-ME PLUS Scripting Automation qNMR Autoshim 	 2D NOESY DQF-COSY Non Uniform Sampling (NUS) PGSE (Diffusion) PSYCHE Pure Shift HSQC

Software Queue Builder

The second second

Automation

- Automated workflow lve
- Simple Robust design Phosphorus
- Protoype preview release coming soon

Applications of Benchtop NMR

Industrial Applications:

- Education
- Organic Synthesis
- Process Control
- QA/QC
- Chemical Analysis
- Quantification (qNMR)
- Reaction Monitoring
- Fumehood Reactions

Student Laboratory Manuals

Traditional Undergraduate Experiment: Synthesis of Aspirin

Contents of <u>lab manuals</u> (see http://www.magritek.com/ applications/chemistry-education/)

- Objectives
- Introduction
- Synthesis of salicylic acid from oil of wintergreen
- Procedure
- Risk Assessment
- ¹H-NMR Spectra
- Synthesis of aspirin from salicylic acid
- ¹H-NMR Spectra
- Tasks and Questions

Tasks and Questions

- 1. Calculate % yield for each step of the synthesis.
- 2. Assign the peaks in the ¹H-NMR spectra of all starting materials and products, and identify functional groups that are unique in each sample.
- 3. Identify the impurities in the crude products. Did recrystallization remove these impurities?

Reaction completion-¹**H**

- Reaction complete? Product expected one?
- Check is done by either high field NMR (expensive/takes longer) or less specific methods like thin layer chromatography (TLC)
- Spinsolve offers the chance to directly do this in the lab without delays !
- No waiting at high field machine and way more information than TLC

Organometallic chemistry

Reaction Monitoring

Following the progress of a reaction from starting material to end-point

Flow reaction monitoring setup

- Every Spinsolve system has an opening all the way from top to bottom
- So a flow cell can be positioned into the NMR spectrometer
- Take an NMR spectrum all 30 ... 60 seconds
- Run the setup either in continuous or stop-flow mode

Acetalization of Acetaldehyde

Acetalization of Acetaldehyde

- Green: methyl group of the acetaldehyde at 2.25ppm
- **Purple**: methyl group of <u>the product</u> acetaldehyde dimethyl acetal at 1.4ppm
- Can easily and accurately monitor the progress of the reaction as it occurs

magr

Real-time monitoring of changes within the flow reaction setup

Closure / Thank you

- For further Information, please contact sales@magritek.com
- Further information is also located on the Web page <u>www.magritek.com</u>
- Typical Spinsolve Example Spectra can be found via <u>http://www.magritek.com/products/spinsolve/nmr-spectra-examples/</u>

